Using white-box nonlinear optimization methods in system dynamics policy improvement

We present a new strategy for the direct optimization of the values of policy functions. This approach is particularly well suited to model actors with a global perspective on the system and relies heavily on modern mathematical white-box optimization methods. We demonstrate our strategy on two classical models: market growth and World. Each model is first transformed into an optimization problem by defining how the actor can influence the models’ dynamics and by choosing objective functions to measure improvements. To improve comparability between different runs, we also introduce a comparison measure for possible interventions. We solve the optimization problems, discuss the resulting policies and compare them to the existing results from the literature. In particular, we present a run of the World2 model which significantly improves the published “towards a global equilibrium” run with equal cost of intervention.

Access article online


Tagged with: , ,